Comparison of RBF Network Learning and Reinforcement Learning on the Maze Exploration Problem

نویسندگان

  • Stanislav Slusny
  • Roman Neruda
  • Petra Vidnerová
چکیده

An emergence of intelligent behavior within a simple robotic agent is studied in this paper. Two control mechanisms for an agent are considered — a radial basis function neural network trained by evolutionary algorithm, and a traditional reinforcement learning algorithm over a finite agent state space. A comparison of these two approaches is presented on the maze exploration problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Algorithms for Small Mobile Robots: Case Study on Maze Exploration

An emergence of intelligent behavior within a simple robotic agent is studied in this paper. Two control mechanisms for an agent are considered — new direction of reinforcement learning called relational reinforcement learning, and a radial basis function neural network trained by evolutionary algorithm. Relational reinforcement learning is a new interdisciplinary approach combining logical pro...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Some Considerations on Learning to Explore via Meta-Reinforcement Learning

We consider the problem of exploration in meta reinforcement learning. Two new meta reinforcement learning algorithms are suggested: EMAML and E-RL. Results are presented on a novel environment we call ‘Krazy World’ and a set of maze environments. We show E-MAML and E-RL deliver better performance on tasks where exploration is important.

متن کامل

Reducing state space exploration in reinforcement learning problems by rapid identification of initial solutions and progressive improvement of them

Most existing reinforcement learning methods require exhaustive state space exploration before converging towards a problem solution. Various generalization techniques have been used to reduce the need for exhaustive exploration, but for problems like maze route finding these techniques are not easily applicable. This paper presents an approach that makes it possible to reduce the need for stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008